POLYMER INSULATED (PI) SERIES CONSTANT WATTAGE HEATING CABLE SYSTEMS
<table>
<thead>
<tr>
<th></th>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>General information</td>
<td>4</td>
</tr>
<tr>
<td>2</td>
<td>Heating cable selection and storage</td>
<td>6</td>
</tr>
<tr>
<td>3</td>
<td>Heating cable installation</td>
<td>7</td>
</tr>
<tr>
<td>4</td>
<td>Components selection and installation</td>
<td>15</td>
</tr>
<tr>
<td>5</td>
<td>Temperature control and limitation</td>
<td>16</td>
</tr>
<tr>
<td>6</td>
<td>Thermal insulation and marking</td>
<td>18</td>
</tr>
<tr>
<td>7</td>
<td>Power supply and electrical protection</td>
<td>20</td>
</tr>
<tr>
<td>8</td>
<td>System testing</td>
<td>21</td>
</tr>
<tr>
<td>9</td>
<td>Operation, maintenance and repairs</td>
<td>22</td>
</tr>
<tr>
<td>10</td>
<td>Trouble Shooting</td>
<td>23</td>
</tr>
</tbody>
</table>
Typical set up of PI-heating cable circuit

[1] The use of the circuit identification label showing all circuit design details is mandatory in hazardous area. (CW-LAB-EX-KIT or PI-LABEL-EX)
1 GENERAL INFORMATION

Use of the manual

This Installation and Maintenance manual is for Pentair series resistance heating cable systems on thermally insulated pipes, vessels and associated equipment only. In particular it refers to polymer insulated (PI) series heating cable systems, which feature a specific power output, varying with design parameters, mostly with cable length and voltage. This manual provides general information and shows an overview of the most common installations and applications off PI. In any case, the information provided for specific projects will take precedence over this manual.

Figure 1: Typical cable construction

Refer to applicable product datasheet for more detailed information.

Figure 2: Typical heating element set up

For information regarding other applications contact your Pentair representative.

Important

For the Pentair warranty to apply, the instructions that are included in this manual and product packages must be followed. The installation must also be in accordance with local National requirements applicable to electrical heat tracing systems, as well as the requirements of other International Standards, such as IEC 60079.
Personal involved in the installation, testing and maintenance of electric heat tracing systems must be suitably trained in all special techniques required, as well as in general electrical installation work. All work should be monitored by supervisors, experienced in heat tracing applications, and all installations must be carried out using the appropriate tools as described in the Pentair literature and installation instructions.

Area Classification – Ordinary

XPI-NH

Area Classification - Hazardous, Zone 1 or Zone 2

Special conditions for safe use:
- The trace heating system is produced, and the temperature class is defined, by the manufacturer himself or on the manufacturer’s responsibility.
- Only separate certified systems components as specified by the manufacturer will be used. These components have to conform with the standards specified on the system approval PTB 08 ATEX 1102X.
- Temperature monitoring devices have to be of the function-tested type, in compliance with the relevant regulations.
- The manufacturer’s operating instructions must be complied with.

Certificate No.	**Approvals coding**
XPI (system)
PTB 08 ATEX 1102X | II 2G Ex e II T2...T6 II 2D Ex tD A21 IP65 T290...T80°C
IECEx PTB 08.0051X | Ex e II T2...T6 Ex tD A21 IP65 T290...T80°C

XPI (bulk cable)
PTB 08 ATEX 1088U | II 2G Ex e II II 2D tD A21
IECEx PTB 08.0049U | Ex e II Ex tD A21

XPI-S (system)
PTB 08 ATEX 1102X | II 2G Ex e II T2...T6 II 2D Ex tD A21 IP65 T290...T80°C
IECEx PTB 08.0051X | Ex e II T2...T6 Ex tD A21 IP65 T290...T80°C

XPI-S (bulk cable)
PTB 08 ATEX 1088U | II 2G Ex e II II 2D tD A21
IECEx PTB 08.0049U | Ex e II Ex tD A21

EAC
(Russia, Kazakhstan, Belarus)
For other countries contact your local Pentair representative.
2 HEATING CABLE SELECTION AND STORAGE

The selection of the proper heating cable and components, best suited for the application must be checked against the relevant product literature and the product properties, of which the most important are summarized in following table:

Table 1: List of heating cable properties

<table>
<thead>
<tr>
<th>Heating cable type</th>
<th>XPI-NH</th>
<th>XPI</th>
<th>XPI-S</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maximum voltage U0/U (V AC)</td>
<td>300/500</td>
<td>500/750</td>
<td>500/750</td>
</tr>
<tr>
<td>Maximum Withstand Temperature (°C)</td>
<td>260</td>
<td>260</td>
<td>260</td>
</tr>
<tr>
<td>Short term temperature exposure (°C)</td>
<td>260</td>
<td>300</td>
<td>300</td>
</tr>
<tr>
<td>Temperature Classification n/a</td>
<td>T2-T6</td>
<td>T2-T6</td>
<td></td>
</tr>
<tr>
<td>Minimum Clearance (mm)[*]</td>
<td>20</td>
<td>20</td>
<td>20</td>
</tr>
<tr>
<td>Impact Resistance (Ω)</td>
<td>n/a</td>
<td>4</td>
<td>7</td>
</tr>
<tr>
<td>Minimum Installation Temperature (°C)</td>
<td>–60</td>
<td>–70</td>
<td>–70</td>
</tr>
<tr>
<td>Min. Bending Radius @ –25 °C [mm]</td>
<td>2,5 x ∅, 2,5 x ∅ (< 6mm)</td>
<td>2,5 x ∅ (< 6mm)</td>
<td>2,5 x ∅ (< 6mm)</td>
</tr>
<tr>
<td>Min. Bending Radius @ –60 °C [mm]</td>
<td>6 x ∅, 6 x ∅ (< 6mm)</td>
<td>6 x ∅ (< 6mm)</td>
<td>6 x ∅ (< 6mm)</td>
</tr>
<tr>
<td>Max. Power Output (W/m)</td>
<td>See table below or use Pentair Software</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chemical resistance[*]</td>
<td>High</td>
<td>High</td>
<td>High</td>
</tr>
</tbody>
</table>

[*] - please check against individual datasheet or contact Pentair Thermal Management for further details.

Table 2: Typical cable limits of power output

<table>
<thead>
<tr>
<th>Maintain temperature (°C)</th>
<th>Typ. max. cable load (W/m)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>good contact</td>
</tr>
<tr>
<td>≤ 10</td>
<td>30</td>
</tr>
<tr>
<td>+ 11...30</td>
<td>25</td>
</tr>
<tr>
<td>+ 31...50</td>
<td>21</td>
</tr>
<tr>
<td>+ 51...75</td>
<td>18</td>
</tr>
<tr>
<td>+ 76...100</td>
<td>15</td>
</tr>
<tr>
<td>+ 101...125</td>
<td>12</td>
</tr>
<tr>
<td>+ 126...150</td>
<td>10</td>
</tr>
<tr>
<td>+ 151...200</td>
<td>8</td>
</tr>
</tbody>
</table>

The typical cable power output is shown above in table 2, depending on application. The maximum cable power output is directly dependent on the application and control method used. The actual limits of PI heating cables in a specific application are given in Pentair Engineering Software [e.g. TraceCalc Pro design software]. Contact Pentair for more details.

Ensure that the heating cable voltage rating is suitable for the service voltage available and that the temperature rating of the heating cable defined by the design is suited for the application.
Changing any major design parameters like voltage or cable length will result in power output other than designed, which may require a redesign of the entire system. To prevent overload of the heating cable, fire or explosion in hazardous areas, verify that the maximum sheath temperature of the heating cable is below T-class or auto-ignition temperature of the gases and/or dusts possibly present in those areas. For further information, see design documentation (e.g. TraceCalc Pro reports).

Check the design specification to ensure the proper heating cable is installed on each pipe or vessel. Refer to Pentair product literature to select an appropriate heating cable for each thermal, chemical, electrical and mechanical environment.

Heating cable storage
- Store the heating cable in a clean, dry place
- Temperature range: –40°C to +60°C
- Protect the heating cable from moisture or mechanical damage

3 HEATING CABLE INSTALLATION

Warning
As with any electrical equipment or wiring installation that operates at line voltages, damage to heating cable and components, or incorrect installation that allows the penetration of moisture or contamination can lead to electrical tracking, arcing and potential fire hazard. Any unconnected heating cable end, exposed to the environment, must be sealed appropriately.

3.1 Pre-installation checks

Check design recommendations:
- Verify that you have all required engineering documents supporting the installation.
- Check for any special instructions in engineering documentation (e.g. fixation method, use of metal mesh etc...).
- Verify that the hazardous area information given in the engineering documentation is compatible with the area classification the material will be installed in.

Check materials received:
- Inspect heating cable and components for in-transit damage.
- Review the heating cable design and compare the list of designed materials to the catalog numbers of heating cables and electrical components received to confirm that proper materials have been received on site. The heating cable type and hazardous area marking is printed on the outer jacket. The application related hazardous area details and relevant design data for each individual heating circuit are recorded on a hazardous area label. (see 7.3)
- Measure and note down the electrical resistance and the insulation resistance of the cable. Compare these values to those in the design documents (see section 8).
Check equipment to be traced:
- Check identification, dimensions of pipework /vessel, actual temperatures and insulation properties against the design documents.
- Ensure all pressure testing of pipework/vessel is complete and final paint and pipe/vessel coatings are dry to touch.
- Walk the system and plan the routing of the heating cable on the pipe, including tracing of heatsinks. e.g. valves, flanges, supports, drains etc.
- Inspect piping for burrs, rough surfaces, sharp edges etc. which could damage the heating cable. Smooth off or cover with layers of glass cloth tape, aluminium foil or rubber profiles (e.g. G-02).

3.2 Heating cable pulling and laying
Heating cable pulling tips:
- Use a reel holder that pays out smoothly with little tension.

Figure 3: Importance of cable pulling direction

- Avoid distortion of the cable and kinking.
- When pulling the heating cable, avoid:
 - sharp edges
 - excessive pulling force
 - kinking and crushing
 - walking on it, or running over it with equipment.
- Keep heating cable strung loosely but close to the pipe being traced, to avoid interference with supports and other equipment.
- Add additional heating cable to trace the fittings, supports and other accessories as required by the design specification.
- Leave the appropriate amount of heating cable at all power connection, splice and tee locations. (Refer to component installation instructions)
- Pay out designed length and mark (i.e. with fixing tape) on cable while remainder of cable still on reel (XPI: use printed metermarks for orientation).
3.3 Heating cable attachment

Avoid using metal bandings, tie wire, vinyl electrical tape or duct tape, as heating cable damage may result. Fix in place with at least two wraps of the appropriate self-adhesive glass cloth tape, metal mesh or fixing strip at 300 mm intervals and additionally where necessary. Other attachments (like aluminium tape) may be specified in the design documentation.

- Cable must be installed and fixed as such, that movement of cable during its heating up cycles is permitted, but not to allow the cable to move freely under its own weight. The heating cables may be installed in straight, multiple runs as required by the design specification.
- On horizontal pipes fix on lower quadrant as shown below and not on bottom of pipe.

Figure 4: Cable orientation on pipe

![Cable orientation on pipe](image)

Read the design documents, in particular concerning the need for cable allowances and regard the location of junction boxes/controllers before permanently attaching the cable to the pipe.

Installation on tanks might require additional fixation devices as prepunched steel strips as shown on the next page:

Figure 5: Typical cable layout on bigger surfaces as tank walls

![Typical cable layout on bigger surfaces as tank walls](image)
Use insulation entry kits, where cable penetrates the metallic insulation cladding by design. In all other places, where cable passes through metal sheet like cladding front disks (e.g. on valves) protective rubber profiles G-02 should be used to mechanically protect the cable.

3.4 Cutting the heating cable

Before cutting it, confirm the minimum required length and tracing allowances.

Any change to designed circuit length will change power output and design must be reconfirmed.

Cut the heating cable to length after it is attached to the pipe.

3.5 Attachment tapes

GT-66 Glass cloth tape for attaching heating cable to pipe. Not for stainless-steel pipes or for installation temperatures below 5°C.

GS-54 Glass cloth tape for attaching heating cable to pipe. For stainless-steel pipes or for any installation below 5°C.

ATE-180 Aluminium tape for attaching the cable to vessels. For all surfaces and installations above 0°C.

At long straight lengths, expansion loops may be needed to allow for thermal expansion of the pipe without exposing cable to excess of strain. Other attachment methods could be specified. In that case, please refer to the design documentation.
3.6 Typical installation details

Typical installation details for fixing heating cable to pipe fittings are shown hereafter.

Figure 7: Typical cable allowance on pipe shoe

![Image of pipe shoe with heating cable]

Pi heating cables must not be overlapped and the minimum clearance must be respected. Refer to the design documentation for more info or contact Pentair for assistance.

Figure 8: Typical cable allowance on valve

![Image of valve with heating cable]

Pi heating cables must not be overlapped and the minimum clearance must be respected. Refer to the design documentation for more info or contact Pentair for assistance.
Pi heating cables must not be overlapped and the minimum clearance must be respected. Refer to the design documentation for more info or contact Pentair for assistance.

General note:
- Trace pipe fittings as shown to allow easy maintenance. Alternatively wire mesh cages might be used.
Consult the design specification for the heat tracing requirements for fittings and supports.

Follow the instructions for cutting and stripping of heating cables; they are included in the individual component installation instructions.

The heating cable’s minimum bend radius must be respected (refer to Table 1), together with the minimum clearance. Refer to the design documentation for more info or contact Pentair for assistance.

Figure 13: Minimal bending radius of cables

Bending the cable

Cable $\varnothing > 6$ mm

Cable $\varnothing \leq 6$ mm
When installing constant wattage heating cables, ensure that they do not overlap or cross. Doing so may lead to local overheating and hazard of fire.

Figure 14: Minimum clearance between heating cables must be respected

Minimum clearance: 20 mm. For hazardous area applications, please consult the Pentair design software, e.g. TraceCalc Pro.

3.7 Heating cable allowances

All parts of a heat traced system that increase the surface area of the normally insulated pipe/ vessel or metallic fins that protrude out of the insulation (e.g. supports), will increase the overall heat loss. These areas of increased heat loss require compensation, either by using higher overall design safety factors or by the addition of extra cable length.

In such cases sufficient cable should be added in such a way to at least enable removal of instruments, valves etc (“maintenance loop”). For pipes requiring more than one run of heating cable, apply the full allowance for each run of cable on each fitting or support as long as space allows. However, PI heating cables must not touch or overlap and the minimum spacing between the heating cables must be respected.

For some applications, it may be physically impossible to install all of the recommended allowance directly on the fitting or support. In this case, install the excess heating cable on the pipe on either side of the fitting or support, or distribute the additional heater length along the entire circuit length if a lower local temperature is acceptable. If required, contact Pentair for assistance.

For further details on individual allowances please refer to the design documentation or the Pentair design software (e.g. TraceCalc Pro reports).
4 COMPONENTS SELECTION AND INSTALLATION

General notes:
Use the Design Specification to select required components. Pentair component kits must be used to satisfy Standards and Approval Body requirements and the Pentair warranty to apply. Installation instructions included in the kit must be followed, including those for preparation of the heating cable connections. Before assembly, use the guide given in the instructions, to ensure that the kit is correct for the heating cable and environment.

4.1 Components required
- For installation of all components refer to the relevant component installation instructions.
- Required for each heating cable end: Cold lead connection and insulation entry kit
- As required: Splice kits and accessories (fixing tape, support brackets, pipe straps, labels, etc)

4.2 Component installation hints
- On horizontal pipes locate junction boxes below pipe wherever possible.
- Locate junction boxes for easy access, but not exposed to mechanical abuse.
- Try to position junction boxes such, that power cable and heating cable entries point downwards, to minimize water ingress in the insulation.
- Confirm junction box glands and stopping plugs are correct for application and fixed firmly in place.
- Route heating cable between junction box and place where it enters the insulation cladding such, that the risk of mechanical damage is minimized.
- **Do not** strain heating cable as it exits/enters junction boxes and insulation entries.
- Ensure heating cable is fixed over pipe straps such as used for junction box support brackets to avoid potential mechanical damage.

Figure 15: Cable layout over clamps and straps

- Cable joints (splices) should be placed only in places, where cable is not bent or mechanically stressed.
5 TEMPERATURE CONTROL AND LIMITATION

5.1 General rules

Pentair PI series heating cables are constant power output heaters and as such typically require temperature control, unless otherwise explicitly specified.

Good practice and local regulations may require additionally independent temperature limitation devices. The selection of such devices also depends on environmental conditions (non-haz. or haz. area)

- For applications in hazardous areas either a stabilised design or a thermostat control with temperature limiter complying with the requirements EN 60079-30 can be used to limit the surface temperature of the heating cable.

- In cases where stabilised design is not applied, a control thermostat ensures that under normal conditions, the heating system will be switched off, as soon as maintain temperature is reached.

An additional, independent temperature limiter ensures that if the control thermostat fails, the surface temperature of the heating cable will not exceed the maximum allowed temperature for hazardous area by switching off the heating cable.

General features of such a limiting device:

- A lockout function ensures that the heating cable remains switched off, until failure has been eliminated and normal conditions are restored.
 The lockout function is manually re-armed.
 Reset requires a tool (e.g. a key to open a panel or a password for software).

- Value of setpoint has to be secured against unintended change.

- Limiter must permanently switch off in case of sensor malfunction.

- The limiter function complies to all relevant standards (e.g. EN60730 or DIN3440 etc.).

Follow the installation instructions supplied with the thermostat and/or the limiter.

Use a proper wiring diagram for the heating cable layout and control method desired.

The limiter must be set to ensure that the maximum temperature of the surface of the cable does not exceed neither T-class nor maximum working temperature of the heater for a given output under worse case conditions.

- Warning
 As with any temperature measurement equipment, possible falsification of true temperatures due to increased heatloss caused by the sensor itself might lead to inaccurate temperature readings or unsafe tripping of safety limiters. The setpoint might need to be adjusted accordingly

Contact Pentair or the supplier of the limitation device in order to obtain detailed information concerning offsetting of limitation devices.
5.2 Sensor placement: Temperature control device

The choice of the right location for the controller sensor depends on, but is not limited to following aspects:

- Flow direction of the fluid, best location: downstream.
- Impact of heatsinks such as supports etc, best: close to heatsink.
- Chimney effect on large size vertical pipes, best: on the bottom.
- Accessibility for maintenance purposes, best: at ground level.
- Impact of other heat sources, sun etc, best: at cold side.

For details please refer to the engineering documentation.

5.3 Sensor placement: limitation device

Typically the sensor is being placed on a length of cable, that is separated from the pipe by means of insulating material, in order to create an “artificial hotspot”.

The choice of the right location for the limiter sensor depends on, but is not limited to following aspects:

- Flow direction of the fluid, best location: upstream.
- Impact of heatsinks such as supports etc, best: away from heatsinks.
- Accessibility for maintenance purposes, best: at ground level.
- Chimney effect on large size vertical pipes, best: at the top.
- Impact of other heat sources, sun etc, best: at hot side of pipe.
- It is the responsibility of the installer to ensure that these conditions are met in the most appropriate way.

For details please refer to the engineering documentation.
6 THERMAL INSULATION AND MARKING

6.1 Pre-insulation checks
- Visually inspect the heating cable and components for correct installation and possible damage. (See Section 10 if damaged.)
- Insulation resistance testing [as per Section 8] is strongly recommended prior to covering the pipe with thermal insulation.

6.2 Insulation related requirements
- Correct temperature maintenance requires properly installed and dry thermal insulation.
- Check that all pipework, including fittings, wall penetrations and other areas are completely insulated.
- Thermally insulate and weatherproof to design specification.
- Polymeric heating cables need to be protected against mechanical damage. Metallic insulation cladding is considered as sufficient mechanical protection.
- Ensure that heating cable is not damaged during installation of cladding by drills, self tapping screws and sharp edges of cladding etc.

In all stabilised design cases, the characteristics of the installed thermal insulation [material and thickness] must comply with the design requirements and be verified and confirmed in the documentation, to ensure compliance with approvals requirements.

Make sure, that under no circumstances any insulation material is being placed between heated surface and cable, thus disabling intended heat flow to the substrate, which may result in possible overheating of the cable.

Good practise requires wrapping of the installed heating system with an appropriate metal foil prior to installation of the thermal insulation. This is especially so at places where intimate contact between trace heating cable and heated surface is not possible, such as valves or flanges where a suitable heat sink of temperature rated metal foil may be used. Details may be described in local insulation standards.

Check that all insulation entry kits are fitted correctly or that other alternative protective devices [such as rubber profiles G-02] are used, where appropriate.

Ensure that all places are sealed where thermostat capillaries, sensor cables or support brackets etc. exit the cladding.

6.3 Marking
- Install “Electric Traced” signs on the insulation cladding along piping at suitable intervals [3-5 m intervals recommended] on alternate sides as a warning.
- Mark on outside of insulation the location of any heating cable components like connection points, splices etc.
7 POWER SUPPLY AND ELECTRICAL PROTECTION

Do not energize cable when it is coiled or on the reel.

7.1 Electrical loading
Size overcurrent protective devices according to the design specification and/or local standard practises.

7.2 Residual current (earth fault) protection
Pentair requires the use of a 30 mA residual current device to provide maximum safety and protection from fire. Where design results in higher leakage current, the preferred trip level for adjustable devices is 30 mA above any inherent capacitive leakage characteristic of the heater as specified by the trace heater supplier or alternatively, the next common available trip level for non adjustable devices, with a maximum of 300mA. All safety aspects need to be proven. For any heating cables installed in a hazardous area, the use of residual current devices is mandatory by the electrical codes and standards.

7.3 Circuit marking
For all hazardous area installations make sure, that system is properly marked with a Haz area label such as CW-LAB-EX-KIT or PI-LABEL-EX, which needs to be completed with design data by the responsible installer. Results of design documentation (TraceCalc Pro) may be used.
8 SYSTEM TESTING

⚠️ WARNING: Fire hazard in hazardous locations. Megger tests can produce sparks. Be sure there are no flammable vapors in the area before performing this test (hot work permit).

8.1 Testing of insulation resistance and conductor resistance

Pentair recommends insulation resistance test
- before installing heating cable
- before installing thermal insulation
- prior to initial start-up/ after completion of thermal insulation
- as part of the periodic maintenance. (see Section 9.2).

The heating circuit electrical resistance needs to be measured and compared to the design documentation before initial startup.

8.2 Test method for insulation resistance testing

After completing heating cable installation, the insulation resistance between the conductor and the braid has to be tested (see Section 6.1).

The minimal required test voltage is 500Vdc, but the trace heating standard EN60079-30 strongly recommends to use a testing voltage of 2500Vdc. Hence Pentair field acceptance test should be carried out with a test voltage of 2500Vdc and the minimum reading should be 20MΩ, regardless of the heating cable length.

The installer should record the values for each circuit on the installation record sheet.

Tip: Discharge heating cable before disconnecting from the Megger.
9 OPERATION, MAINTENANCE AND PIPE REPAIRS

⚠️ WARNING: Heating cables are capable of reaching high temperatures during operation and can cause burns when touched. Avoid contact when cables are powered. Insulate the pipe before energizing the cable. All work needs to be carried out by properly trained personnel.

9.1 Heating cable operation

- Temperature exposure of the cable must be within the range specified in the product literature. Exceeding the limitations will shorten the service life and may permanently damage the heating cable.
- Pipe insulation must be complete and dry to maintain the required temperature.

9.2 Inspection and maintenance

- Visual inspection: exposed heating cable should be checked periodically to make sure that no mechanical damage has occurred.
- Insulation resistance testing: The system should be tested regularly. Check in advance, whether hazardous area conditions allow insulation resistance testing. A hot work permit might be required.
- When measuring the insulation resistance from the main supply panel, the test is performed between L and PE. Optional testing could be performed between braid and pipe (disconnect heating cable ends).
- Functionality test of electrical protection: Circuit breaker and residual current device should be tested at least once a year or according to manufacturer’s instructions.
- Functionality test of temperature control systems: Depending on how essential temperature control is regarding process requirements and how critical temperature limitation is for fulfillment of hazardous area requirements, tests should be carried out at regular intervals.
- The Installation Record Sheet on the following pages should be completed during maintenance of each circuit in your system. Freeze protection systems should be tested before the winter months each year [see section 8]. Temperature maintenance systems should be tested at least twice a year.
9.3 Piping systems repair and maintenance

- Isolate heating cable circuit and protect the heating cable from mechanical or thermal damage during pipe repair work.
- Check heating cable installation after pipe repairs and make sure that thermal insulation is restored according to the recommendations in Section 6. Check correct functioning of all relevant electrical protection systems.

10 TROUBLE SHOOTING

⚠️ WARNING: Damage to cables or components can cause sustained electrical arcing or fire. Do not energize heating cables that have been damaged. Damaged heating cable, splices or connections must be repaired or replaced. Damaged cable should be repaired by a qualified person.

- It should be carefully evaluated, whether the severity of the damage allows on-site repair or whether the entire heating cable needs to be replaced.

Also refer to the Troubleshooting guide on the following pages. If the problem persists after following the guidelines, contact Pentair.
MONOPHASED INSTALLATION RECORD SHEET

<table>
<thead>
<tr>
<th>Field</th>
<th>Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>Installation company:</td>
<td></td>
</tr>
<tr>
<td>Project / Site name:</td>
<td></td>
</tr>
<tr>
<td>Area name:</td>
<td></td>
</tr>
<tr>
<td>Average pipe temperature when measuring loop resistance:</td>
<td>°C</td>
</tr>
<tr>
<td>Heating circuit no.:</td>
<td></td>
</tr>
<tr>
<td>P & ID -no.:</td>
<td></td>
</tr>
<tr>
<td>Drawing no.:</td>
<td></td>
</tr>
<tr>
<td>Panel/Circuit breaker no.:</td>
<td></td>
</tr>
<tr>
<td>Cable type:</td>
<td></td>
</tr>
<tr>
<td>Total Cable length (m):</td>
<td>m</td>
</tr>
</tbody>
</table>

Date: []
<table>
<thead>
<tr>
<th></th>
<th>Required value</th>
<th>Actual value</th>
<th>Signature</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Visual inspection</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1a</td>
<td>Minimal allowed spacing</td>
<td>mm*</td>
<td>mm</td>
</tr>
<tr>
<td>1b</td>
<td>Minimal bending radius</td>
<td>mm*</td>
<td>mm</td>
</tr>
<tr>
<td>1c</td>
<td>Temperature sensor properly installed on the pipe/vessel & control temperature is set</td>
<td></td>
<td>yes:</td>
</tr>
<tr>
<td>1d</td>
<td>Sensor of temperature limiter properly installed and set according to design specification</td>
<td></td>
<td>yes:</td>
</tr>
<tr>
<td>2</td>
<td>Before commencing of thermal insulation works</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2a</td>
<td>Insulation resistance test voltage (V dc)</td>
<td>≥ 2500 Vdc</td>
<td>Vdc</td>
</tr>
<tr>
<td>2b</td>
<td>Insulation resistance of cable</td>
<td>> 20 MΩ</td>
<td>MΩ</td>
</tr>
<tr>
<td>2c</td>
<td>Cable resistance:</td>
<td>Ω</td>
<td>Ω</td>
</tr>
<tr>
<td>2d</td>
<td>Cable covered with aluminium foil at flanges & cable on valves with wire mesh cages</td>
<td></td>
<td>yes:</td>
</tr>
<tr>
<td>3</td>
<td>After finalization of thermal insulation works</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3a</td>
<td>Cables entries are sealed and cable protected at entries into insulation cladding</td>
<td></td>
<td>yes:</td>
</tr>
<tr>
<td>3b</td>
<td>Thermal insulation material meets design requirements</td>
<td>*</td>
<td>yes:</td>
</tr>
<tr>
<td>3c</td>
<td>Thermal insulation thickness meets design requirements</td>
<td>mm*</td>
<td>yes:</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>3d</td>
<td>Warning labels installed on cladding</td>
<td>every 5 m / at components</td>
<td>yes:</td>
</tr>
<tr>
<td>3e</td>
<td>Insulation resistance test voltage (Vdc)</td>
<td>≥ 2500 Vdc</td>
<td>Vdc</td>
</tr>
<tr>
<td>3f</td>
<td>Insulation resistance of cable</td>
<td>> 20 MΩ</td>
<td>MΩ</td>
</tr>
</tbody>
</table>

4 Prior to energizing of the cable

<p>| | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>4a</td>
<td>Circuit feeding box marked properly</td>
<td>yes:</td>
<td></td>
</tr>
<tr>
<td>4b</td>
<td>Control temperature set to setpoint</td>
<td>°C*</td>
<td>°C</td>
</tr>
<tr>
<td>4c</td>
<td>Limiter set to trip value and protected against damages</td>
<td>°C*</td>
<td>°C</td>
</tr>
<tr>
<td>4d</td>
<td>Insulation resistance test voltage (Vdc)</td>
<td>≥ 2500 Vdc</td>
<td>Vdc</td>
</tr>
<tr>
<td>4e</td>
<td>Insulation resistance at commissioning of cable</td>
<td>> 20 MΩ</td>
<td>MΩ</td>
</tr>
<tr>
<td>4f</td>
<td>Circuit voltage at feeding box</td>
<td>Vac L-N*</td>
<td>Vac L-N</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Vac L-L*</td>
<td>Vac L-L</td>
</tr>
</tbody>
</table>

Remarks: (fill in what is applicable)

(*1) Value to be taken from design documentation.

General note: Local / national rules and standards need to be respected where applicable.
TRIPHASED INSTALLATION RECORD SHEET

<table>
<thead>
<tr>
<th>Required value</th>
<th>Actual value</th>
<th>Signature</th>
</tr>
</thead>
<tbody>
<tr>
<td>Average pipe temperature when measuring loop resistance:</td>
<td>°C</td>
<td></td>
</tr>
<tr>
<td>Heating circuit no.:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>P & ID -no.:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Drawing no.:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Panel/Circuit breaker no.:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cable type:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cable length first segment:</td>
<td>m</td>
<td></td>
</tr>
<tr>
<td>Cable length second segment:</td>
<td>m</td>
<td></td>
</tr>
<tr>
<td>Cable length third segment:</td>
<td>m</td>
<td></td>
</tr>
<tr>
<td>Configured in: DELTA / STAR (cross out what is not applicable)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- Visual inspection
 - Minimal allowed spacing: mm*
 - Minimal bending radius: mm*
 - Temperature sensor properly installed on the pipe/vessel & control temperature is set: yes:
 - Sensor of temperature limiter properly installed and set according to design specification: yes:

- Insulation resistance test voltage (Vdc) ≥ 2500 Vdc
 - Segment 1: > 20 MΩ
 - Segment 2: > 20 MΩ
 - Segment 3: > 20 MΩ

- Cable covered with aluminium foil at flanges & cable on valves with wire mesh cages: yes:

- Cables entries are sealed and cable protected at entries into insulation cladding: yes:
 - Thermal insulation material meets design requirements: * yes:
 - Thermal insulation thickness meets design requirements: mm*
 - Warning labels installed on cladding every 5 m/ at components: yes:
 - Insulation resistance test voltage (Vdc) ≥ 2500 Vdc
 - Segment 1: > 20 MΩ

- Circuit feeding box marked properly: yes:
 - Control temperature set to setpoint: °C*
 - Limiter set to trip value and protected against damages: °C*
 - Insulation resistance test voltage (Vdc) ≥ 2500 Vdc
 - Insulation resistance at commissioning segment 1: > 20 MΩ

- Circuit voltage at feeding box: 3 x Vac L-N*
 - Vac L-L*

Remarks: (fill in what is applicable)

(*1) Value to be taken from design documentation.

General note: Local / national rules and standards need to be respected where applicable.
1 Visual inspection

1a Minimal allowed spacing

1b Minimal bending radius

<table>
<thead>
<tr>
<th>Requirement</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Temperature sensor properly installed on the pipe/vessel & control temperature is set</td>
<td>yes:</td>
</tr>
<tr>
<td>Sensor of temperature limiter properly installed and set according to design specification</td>
<td>yes:</td>
</tr>
</tbody>
</table>

2 Before commencing of thermal insulation works

2a Insulation resistance test voltage (Vdc)

<table>
<thead>
<tr>
<th>Requirement</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>≥ 2500 Vdc</td>
<td>Vdc</td>
</tr>
</tbody>
</table>

2b Insulation resistance segment 1

<table>
<thead>
<tr>
<th>Requirement</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>> 20 MΩ</td>
<td>MΩ</td>
</tr>
</tbody>
</table>

2c Segment 1 resistance:

<table>
<thead>
<tr>
<th>Requirement</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ω*</td>
<td>Ω</td>
</tr>
</tbody>
</table>

2d Cable covered with aluminium foil at flanges & cable on valves with wire mesh cages

<table>
<thead>
<tr>
<th>Requirement</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>yes:</td>
<td></td>
</tr>
</tbody>
</table>

3 After finalization of thermal insulation works

3a Cables entries are sealed and cable protected at entries into insulation cladding

<table>
<thead>
<tr>
<th>Requirement</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>yes:</td>
<td></td>
</tr>
</tbody>
</table>

3b Thermal insulation material meets design requirements

<table>
<thead>
<tr>
<th>Requirement</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>*</td>
<td>yes:</td>
</tr>
</tbody>
</table>

3c Thermal insulation thickness meets design requirements

<table>
<thead>
<tr>
<th>Requirement</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>mm*</td>
<td>yes:</td>
</tr>
</tbody>
</table>

3d Warning labels installed on cladding

<table>
<thead>
<tr>
<th>Requirement</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>every 5 m/ at components</td>
<td>yes:</td>
</tr>
</tbody>
</table>

3e Insulation resistance test voltage (Vdc)

<table>
<thead>
<tr>
<th>Requirement</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>≥ 2500 Vdc</td>
<td>Vdc</td>
</tr>
</tbody>
</table>
Prior to energizing of the cable

4a Circuit feeding box marked properly
4b Control temperature set to setpoint
4c Limiter set to trip value and protected against damages
4d Insulation resistance test voltage (Vdc)
4e Insulation resistance at commissioning segment 1
4f Circuit voltage at feeding box

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>3f Insulation resistance segment 1</td>
<td>> 20 MΩ</td>
</tr>
<tr>
<td>Insulation resistance segment 1</td>
<td>> 20 MΩ</td>
</tr>
<tr>
<td>Insulation resistance segment 1</td>
<td>> 20 MΩ</td>
</tr>
</tbody>
</table>

Remarks: (fill in what is applicable)

(*1) Value to be taken from design documentation.

General note: Local / national rules and standards need to be respected where applicable.
TROUBLE SHOOTING GUIDE

A **Symptom:** Overcurrent protection trips.

Probable Causes

1. Electrical fault at:
 a. damaged heating cable
 b. faulty splices
 c. cold lead connections

2. Circuit oversized

3. Defective electrical protection

4. Start-up below minimum design temperature
 (copper conductor only)

B **Symptom:** RCD trips.

Probable Causes

1. Earth fault at:
 a. damaged heating cable
 b. faulty splices
 c. cold lead connections

2. Excessive moisture in:
 a. junction boxes
 b. splices and cold lead connections

3. High leakage currents due to a combination of
 excessive lengths of power cable and heating cable.

4. Defective RCD

5. Mains borne disturbances
Corrective actions

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Investigate and remedy</td>
</tr>
<tr>
<td>2</td>
<td>Resize or redesign</td>
</tr>
<tr>
<td>3</td>
<td>Replace</td>
</tr>
</tbody>
</table>
| 4 | a redesign for lower startup temperatures.
 b preheat pipe from alternative heat source to temperatures considered in electrical design
 c employ soft start techniques of control system to smoothly heat up system. |

Corrective actions

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Investigate and remedy</td>
</tr>
<tr>
<td>2</td>
<td>Dry out and reseal or remake immediately and perform insulation resistance test.</td>
</tr>
<tr>
<td>3</td>
<td>Redesign</td>
</tr>
<tr>
<td>4</td>
<td>Replace</td>
</tr>
<tr>
<td>5</td>
<td>Redesign distribution</td>
</tr>
</tbody>
</table>
C **Symptom:** No power output.

Probable Causes

1. Temperature limiter is tripped

2. Loss of supply voltage due to:
 a. overcurrent protection or residual current protection operating
 b. loose terminals in junction box, bad splice
 c. loss of supply cable continuity (open circuited from damage)

3. Temperature controller defect

D **Symptom:** Low pipe temperature.

Probable Causes

1. Wet thermal insulation

2. Incorrect setting or operation of temperature controls e.g., thermostats.

3. Design error

Note:
Locate faults by the following steps:

1. Visually inspect the power connections and splices for correct installation.

2. Look for signs of damage at:
 a. Valves, pumps, flanges and supports.
 b. Areas where repairs or maintenance work has been carried out recently.

3. Look for crushed or damaged insulation and cladding along the pipe.
Corrective Actions

1. Investigate causes, restore normal conditions and re-arm.

2. Restore supply voltage
 - **a** following A and B
 - **b** re-tighten terminals, replace splice connection
 - NB: If excessive heating has occurred due to high resistance, replace terminals or crimps
 - **c** locate damage and repair

3. Investigate causes, replace equipment

Corrective Actions

1. Remove and replace with dry insulation of correct specification and ensure complete weatherproofing

2. Repair or reset to correct level of operation

3. Check with competent authority for design conditions and modify to meet Pentair recommendations

4. If after 1, 2 and 3 above the fault has not been located, then either:
 - **a** Consult Pentair for further assistance.
 - **b** Where local practices and conditions allow (e.g., non-hazardous areas) isolate one section of heating cable from another by cutting in half and testing (e.g., insulation resistance) both halves until general area of damage is found.
 Remove insulation and expose fault.